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Method of images in optical discrete systems
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We show that optical wave propagation in discrete boundary geometries can be effectively analyzed using
the method of images. Such semi-infinite and finite discrete systems include, for example, waveguide arrays as
well as coupled resonator optical waveguides. In the linear domain, the diffraction properties of one- and
two-dimensional bounded array structures are considered in detail. The possibility of using the method of
images to numerically investigate nonlinear semi-infinite lattices is also discussed.
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I. INTRODUCTION

The discrete coupling or tunneling process between peri-
odically arranged potential wells is a fundamental topic that
has been extensively investigated in many branches of phys-
ics. In optics, arrays of weakly coupled waveguides and reso-
nators are prime examples of such systems where the cou-
pling dynamics can be directly observed and investigated
[1,2]. Periodic array structures are typically comprised from
single-mode waveguides that are coupled to each other
through the evanescent tails of adjacent guided fields [2].
Likewise, the transport dynamics in periodic chains of mi-
crocavities (coupled resonator waveguides or CROWs) fol-
low similar rules [3]. In these configurations, linear mode
coupling leads to energy redistribution among the elements
of the array, a mechanism better known as discrete diffrac-
tion. The problem of discrete diffraction in infinite optical
arrays was first analytically solved by Jones in 1965 [1]. This
was done by explicitly obtaining the impulse response of the
infinite chain in terms of Bessel functions. This behavior was
subsequently observed in one-dimensional (ID) AlGaAs
waveguide arrays by several experimental groups [4,5].
Lately, diffraction in two-dimensional discrete systems has
also been observed in femtosecond laser induced waveguide
arrays [6] and in optically induced photorefractive lattices
[7].

Under nonlinear conditions (when the material is nonlin-
ear and at high excitation powers), a self-localized nonlinear
entity can also be supported by the periodic potential of the
array. This nonlinear wave or optical discrete soliton [8] re-
mains invariant during propagation through a balance of dif-
fraction and nonlinearity. Again the discreteness offers a rich
spectrum of properties and possibilities that do not exist in
the bulk. Modulation instability [9] and discrete/lattice soli-
tons in cubic [5,7-10], photorefractive [11], and quadratic
waveguide arrays [12,13] have been examined theoretically,
and observed experimentally. In addition, discrete solitons in
systems that exhibit nonlocal nonlinearities, such as semi-
conductor amplifiers and nematic liquid crystals, have been
considered [14,15].

Boundaries and surfaces can also introduce new physical
features due to the break of the translational symmetry. For
example, electromagnetic surface waves are possible along
the boundary between two different media (continuous or
periodic). Linear and nonlinear surface waves in both bulk
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and periodic environments have been considered during the
past few years in various fields of science [16-22].

Clearly the presence of boundaries can considerably com-
plicate the wave dynamics, even in linear array networks.
Unlike infinite discrete systems whose diffraction character-
istics have been known for some time [1,4], the correspond-
ing behavior in semi-infinite or finite arrays remains to be
explored.

In this paper, we demonstrate that optical wave propaga-
tion in discrete boundary geometries can be analyzed using
the method of images. This is done by introducing fictitious
sources outside the region of interest, in a way similar to the
method of images used in other fields like electrostatics [23],
mechanics [24], electrodynamics [25], and solid state physics
[26]. The proposed method offers several advantages in
terms of studying this broad class of problems. More specifi-
cally, for certain lattice topologies the use of images leads to
closed form solutions, whereas for finite array geometries it
greatly simplifies the analysis. In addition, this same tech-
nique can be employed to study wave propagation in
bounded nonlinear discrete systems, provided that the initial
conditions are preserved. This method is elucidated by pro-
viding pertinent examples.

II. SEMI-INFINITE AND FINITE ONE-DIMENSIONAL
WAVEGUIDE ARRAYS

Let us consider a linear semi-infinite array of weakly
coupled waveguides, like the one depicted in Fig. 1(a).
Within the context of coupled mode theory, wave propaga-
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FIG. 1. (Color online) (a) A semi-infinite waveguide array under
single site excitation at position m, and (b) the equivalent infinite
array with the image positioned at the —(m+2) site. The field in the
n=-1 waveguide is always zero, because of the mirror symmetry.
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tion in such a structure is described by the following equa-
tions:

dE,
i— + BEy+cE, =0, (1a)
dz

n

dE
+ BEn + C(En+l + En—l) = 0,
dz

i forn=1, (1b)
where E,, is the electric modal field in the nth waveguide, 8
is the propagation constant, and c is the coupling coefficient.
We note that similar equations are applied to describe
CROW microcavities in the temporal domain [3]. By utiliz-
ing the transformation E,=a, exp(i8z) and by normalizing
the propagation distance with respect to the coupling length,
i.e., Z=cz, Egs. (1) are rewritten as

day

ld_Z +a;=0, (2a)
da,
lE+an+1+an_1=O, forn=1, (2b)

where a, represents the normalized modal amplitude in the
nth waveguide. In order to study the diffraction properties of
this semi-infinite array it is first important to derive its im-
pulse response. The impulse response of this structure is, in
fact, the solution of Egs. (2) under single site excitation, i.e.,
a,=Aq0,, (if, for example, site m is initially excited). Fol-
lowing the argument presented later, the diffraction problems
in infinite and semi-infinite arrays are related to each other
through the method of images. The goal here is to identify an
equivalent infinite system in which the half region is gov-
erned by Egs. (2). This can be done by demanding that the
field at the site a_; is always zero during propagation
[a_,(Z)=0]. This last requirement can only be satisfied if a
fictitious source or image with a relative phase difference 7
(with respect to the actual source) is positioned symmetri-
cally around the n=—1 site. This is because the antisymmet-
ric conditions used at the input guarantee that a_;(Z)=0 for
all values of propagation distance Z. As a result, the two
semi-infinite sections of the equivalent infinite array are de-
coupled and thus Egs. (2) hold true in the region of interest
(n=0). Therefore the study of the semi-infinite array can be
carried out by considering the diffraction dynamics in an
infinite lattice under appropriate initial conditions. In this
case the superposition of the fields emanating from the actual
source and the image provide the impulse response of the
semi-infinite array. By using the already known impulse re-
sponse of an infinite array, that is, a,(Z)=Aq""J,_,.(2Z)
when site m is excited [1], the diffraction problem can then
be directly solved. Given that the excitation site is at m, then
its image (with respect to the n=—1 waveguide) is positioned
at the —(m+2) channel, (see Fig. 1(b)). Thus, the diffracted
field resulting from the actual excitation site is given by
i"J,_..(2Z), whereas that originating from its image is de-
scribed by (=1)i"*"*2],.. .»(2Z). Hence the corresponding
impulse response of the semi-infinite array [analytical solu-
tion to Eq. (2)] is given in closed form by
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FIG. 2. (Color online) Intensity distribution in a semi-infinite
array, when only the channel n=2 is excited.

an(Z) = A()[i”_m]n—m(zz) + in+m n+m+2(2Z):| . (3)

The validity of the method of images in dealing with op-
tical discrete systems can also be formally justified. In par-
ticular, by applying Z-transform techniques [10,27,28], one
can analytically show (see the Appendix), that an antisym-
metric initial condition at Z=0, a_,(0)=0, a,(0)=-a_,_,(0),
remains antisymmetric during propagation. This implies that
a_;(2)=0, and a,(Z)=-a_,_,(Z) for every value of Z. Under
such initial conditions, the wave propagation in an infinite
waveguide array in the region of interest n=0, is governed
by Egs. (2) of the semi-infinite array. Since the two structures
are described by the same equations and since the solution of
the system of ordinary differential equations happens to be
unique, we then conclude that the two array systems are
mathematically equivalent for n=0. The discrete diffraction
pattern of a semi-infinite array when the channel n=2 is
initially excited is depicted in Fig. 2.

The method of images can also be employed to study the
diffraction in a finite array of N waveguides. Obtaining the
impulse response of a finite lattice is more complicated,
since this type of structure involves two boundaries. In this
case, the problem can be mapped to that of an infinite wave-
guide array, where the field in the two channels (denoted L
and R) located (left and right) at the fictitious edges of the
system (N+1 sites away from each other) remains always
zero. Between these two virtual boundaries, the infinite and
the finite array exhibit the same behavior. To find the impulse
response of this structure, let us consider the case where a
single waveguide site is excited between the L and R chan-
nels. In order for the field in these waveguides to be always
zero, the corresponding images must be appropriately situ-
ated in the equivalent infinite array. In particular, a negative
image is positioned symmetrically with respect to the virtual
site L (see Fig. 3) and another one (negative) with respect to
R. These images act as secondary excitation sites and in turn
lead to two new positive images. One of these two new im-
ages results from the reflection of the secondary image lo-
cated at the left of L with respect to the R site and similarly
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FIG. 3. (Color online) Equivalent infinite array configuration for
the case of a finite array of N elements. For simplicity here, N=2.
The region of interest lies between the L and R waveguide sites.
The index r denotes the image pair.

the other from a reflection at L (see Fig. 3). This process
continues indefinitely and the result is an infinite number of
positive and negative pairs of images. For illustration pur-
poses, Fig. 3 shows the positions of these pairs of images
when N=2. Once more, by applying the superposition prin-
ciple, a closed form expression for the impulse response of
an array of N waveguides, can be found. When the mth site
of the finite array is excited, the field at the nth site is given
by the expression

+0

an(Z) = AO E {i—(2N+2)r[l-n—m n—m—(2N+2)r(2Z)

- in+m+2Jn+m+2—(2N+2)r(zz)]}s (4)

where r is the image index pair, and 2N+2 is the period
between the positive or negative images.

The use of the method of images in analyzing finite arrays
offers several advantages over other schemes especially
when the number of elements N is relatively large. In prin-
ciple, the impulse response of a finite array can be obtained
by considering the projection of the input vector over the
supermode eigenvectors of the array [29]. Yet, this latter ap-
proach requires summing up N contributions, something that
is impractical when N is large. On the other hand, for finite
distances, the method of images can provide a solution to
this problem, by only keeping a finite number of terms in the
Bessel function expansion of Eq. (4). This approximate de-
scription will accurately follow the wave dynamics in a finite
array as long as the consecutive reflections from the bound-
ary walls correspond the image pair of images (accounted in
the truncated expression). Figure 4 shows the discrete dif-
fraction in an N=5 array, when the n=1 site is excited up to
a normalized distance of Z=5. These results were obtained
using only four pairs of images and are in excellent agree-
ment with the actual response of the system.

III. LINEAR 2D SEMI-INFINITE WAVEGUIDE ARRAYS

The method of images can also be extended to
analyze semi-infinite two-dimensional periodic structures. In
general, wave propagation in an infinite two-dimensional
waveguide array is governed by the normalized coupled
mode equation,

da,
dé + A+l + Ay m-1 + Ayiim + Ay \m= O’ (5)

i
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FIG. 4. (Color online) Diffraction pattern in an array of five
elements, by using the equivalent infinite array with nine images.
The region that corresponds to the finite array is located between
the two white dotted lines. The site n=1 was initially excited. Here
only five images are shown.

where a,, is the modal amplitude at the (n,m) site, and Z
the normalized propagation distance. In deriving Eq. (5), we
have assumed negligible diagonal coupling effects, and we
have considered only nearest-neighbor interactions. If only
one channel is excited at the (p,q) site, ie., a,,(0)
=A00, the discrete diffraction is described by a,,,(Z2)
=A, z<” 1’) jin- q)Jn_p(2Z)J,,,_q(ZZ). Since the impulse response
of an infinite 2D lattice is known, closed form solutions can
be obtained by applying the method of images in the case of
diffraction problems involving boundaries.

A discrete arrangement in a semi-infinite plane is shown
in Fig. 5(a). The source in this lattice is positioned at the
(p,q) site. Following the rationale of the previous section,
the image (with a 7 phase shift) is located at (-p-2,q),
and the virtual zero line is at p=—1 (see Fig. 5(b)). In this
case, the field distribution at the (n,m) site when initially

a, ,(0)=A(8,,0,, is given by

ayu(Z) = A{i" P10, (22)],,,_,(22)
+iP0], 022D, (22 (6)

Figure 6 demonstrates the intensity pattern in such a
semi-infinite lattice topology when the site (3, 0) is initially
excited.

IV. LINEAR 2D WAVEGUIDE ARRAY
ANGULAR SECTORS

In this section we will use the image method to study 2D
array angular sectors. A 90° corner is shown in Fig. 7(a). The
discrete diffraction resulting from a single excited site can be
obtained by considering the equivalent 2D infinite array un-
der the appropriate initial conditions. In a way similar to that
used in electrostatics, in order for the method of images to
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FIG. 5. (Color online) (a) A semi-infinite two-dimensional lat-
tice where the source is at the (p,q) site, and (b) the equivalent
infinite lattice with the source and the corresponding anti-phase
image located at (—-p—2,g) waveguide channel. The axis of sym-
metry is illustrated as a dotted line.

work, the field along the two axes of symmetry p=—1, and
g=-1 must be always zero. More specifically, if the excita-
tion occurs at the (p,q) channel in the positive quadrant, the
related images are located at the three symmetric positions
with respect to the center of the lattice (—1,—1). As depicted
in Fig. 7(b), the two negative images A and C are situated at
(=p-2.,q), (p,—q—2), respectively, and the positive image B
at (—p—2,—g—2). The two pairs (actual source, image A)
and images (B,C) keep the p=—1 axis at zero, while the axis
g=-1 is at zero because of the other two pairs (A, B) and
(excitation, C). By superposing the fields from the actual
source and the three images, we obtain the analytical solu-
tion for the diffracted field at the (n,m) site (in the positive
quadrant) when a,,,,(0)=A,5,,6,,. that is,

,(Z) = AP0, 22)],,4(22)

+ i(n_p)+(m+q)‘]n—p(2Z)Jm+q+2(2z)

+ i(n+p)+(m_q)‘]lz+p+2(Q'Z)Jm—q(zz)
D] QD) g2(22)]. (7)
The intensity distribution after a normalized distance of

Z=4, where only the (0,1) site is initially excited is depicted
in Fig. 8.
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FIG. 6. (Color online) Discrete diffraction in a semi-infinite two
dimensional waveguide array for a normalized distance of Z=3.3,
when only the (3, 0) site was initially excited.

Another interesting lattice configuration that can be ana-
lytically treated using this technique, is that of a 2D 45°
array corner. This lattice sector is contained between the
+45° axis and the 0° axis of symmetry (see Fig. 9(a)). In this
case, seven images are required in order to keep the four axes
p=-2,q=-1, +45°, and —45° degree always at zero (see Fig.
9(b)). When the excited site is located at (p,q) (with g=<p),
then the field at the (n,m) channel is given by the following
relation:
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FIG. 7. (Color online) (a) A two-dimensional lattice angular
sector of 90°, where the source is at the (p,q) site and (b) the
equivalent infinite two-dimensional lattice with the source and the
corresponding three images A, B, C appropriately positioned. The
axes of symmetry are shown with dotted lines.
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FIG. 8. (Color online) Intensity pattern in two-dimensional 90°
waveguide array corner for a normalized distance of Z=4, under a
(0, 1) waveguide site excitation.

ay(Z) = A{i =0, (22)],,,(2Z)
= Jeg1 Q2 y 1 (2Z)] + (PP
X[ egr122 14p43(2Z) = J i pia(22)J .-,
+ (PR32 a3 (2Z)
= Jipsd Q2 1y ga(2Z)] + 0PI
X[Jp22)] 14442(22) = 11141322 ] 1 (22) ]}
(8)

Figure 10 shows the intensity pattern resulting from the dis-
crete diffraction at Z=3, when the site (0,0) has been initially
excited.

(22)]

V. NONLINEAR WAVEGUIDE ARRAYS

Thus far, we have only considered linear optical lattices
where the superposition principle can be applied in conjunc-
tion with the method of images to study their diffraction
characteristics. Clearly, if the array is nonlinear such super-
position is not allowed. In this case the underlying evolution
dynamics are governed by a discrete nonlinear Schrodinger
equation [8]. If the nonlinearity is of the Kerr type, then a 1D
semi-infinite waveguide array is described by the following
equations:

day
’E+al+|%‘ ay=0, (9a)

da,

i— forn=1. (9b)
dzZ

+tapta, g+ |an|2an = 07
Yet, even though the superposition principle is no longer
valid (because of nonlinearity) the method of images can still
be useful in analyzing nonlinear bounded discrete geom-
etries. For example, discrete surface soliton solutions can be
numerically obtained from the equations of an infinite lattice
by assuming an antisymmetric or twisted (a,=-a_,_,) field
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FIG. 9. (Color online) (a) A two-dimensional lattice angular
sector of 45°, where the source is at the (p,q) site, and (b) the
equivalent infinite two-dimensional lattice under the excitation of
the source and the corresponding seven images. The axes of sym-
metry are depicted with dotted lines.

profile. Figure 11(a), shows the intensity profile of such a
solution and the corresponding power-eigenvalue diagram
[22]. In agreement with the Vakhitov-Kolokolov criterion
these solutions are only stable for ©>?2.99, where dP/du
>0. On the other hand Fig. 11(b) depicts a twisted soliton
solution [30,31], as obtained in an infinite array. Note that

£

@

o

£

S

c

[}

°

=]

o

[}

>

©

=
0 2 4 6
Waveguide number n

FIG. 10. (Color online) Diffraction evolution in two-

dimensional 45° waveguide array angular sector for a normalized
distance of Z=3. Channel (0, 0) has been excited.
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FIG. 11. (Color online) Normalized discrete soliton power P
versus the normalized eigenvalue u, for the cases of (a) a surface
soliton in a semi-infinite array, and (b) a twisted soliton in an infi-
nite array. The intensity distribution associated with ©=2.93 surface
soliton and twisted soliton are shown in the insets of (a) and (b),
respectively.

the assumed antisymmetry makes this problem directly rel-
evant to the semi-infinite case. The solution of Fig. 11(b)
exhibits a P— u diagram that is in fact a scaled version (by a
factor of 2 in terms of power) of that in Fig. 11(a). This
should have been expected since the surface soliton solution
of the semi-infinite array (inset of Fig. 11(a)) is just the
right-hand part of that of the infinite system (inset of Fig.
11(b)). Yet, the stability properties of these two states are
very different. The twisted mode of the infinite array happens
to be stable for w>4.31, as opposed to the surface state,
which is stable for w>2.99. This is because these solutions
correspond in reality to altogether different physical prob-
lems. The former is a surface state whereas the latter is
twisted self-trapped mode. We note that quite recently we
successfully used this nonlinear version of the method of
images in order to simulate the spatiotemporal dynamics of
optical pulses in semi-infinite AlGaAs and LiNbO; wave-
guide arrays [32]. This was done by using an “anti-
symmetric” excitation in an equivalent infinite system, which
conserves the condition a_;(Z)=0 necessary for this method
to work.

VI. CONCLUSIONS

In this paper, we have shown that optical wave propaga-
tion in discrete boundary geometries can be analyzed
using the method of images. This was done by introducing
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fictitious sources outside the region of interest. Analytical
solutions in various 1D and 2D lattice topologies have
been obtained. These include, for example, 1D semi-infinite
arrays, finite systems, and 2D angular sectors. The use
of the method in nonlinear discrete systems was also
discussed.

APPENDIX

Let us consider the normalized wave propagation equa-
tion in a infinite waveguide array,

da,
i— +a,+a,;=0.

dz (A1)

By using the Z transform, we will show here that the
mirror symmetry assumed at the input of the array (Z=0)
is preserved during propagation. In other words, if
a,(0)==a_,(0), ay(0)=0, then a,(Z)=-a_,(Z), ax(Z)=0 for
every propagation distance Z. For convenience, we assume
that the zero symmetry line is at n=0.

The Z transform A(Z) of the sequence {a,} and its corre-
sponding inverse transform a,(Z) are defined in the complex
domain as [10,27]

+00
AZ)= 2 ax",

(A2)
1 —n-1
a,(Z)=— AZ)x" " dx. (A3)
i |x|=1
The Z transform of Eq. (Al) is
A(Z,x) = A(0,x)expli(x + x1)Z]. (A4)

From (A2) and the imposed initial conditions at Z=0, the
A(0,x) term can be found. More specifically, we get

400

A0,x)= 2 a,(0)x",

n=—%

therefore

+00

A(0,x) = 2 a,(0)(x" - x7").

n=1
This provides A(Z,x), which is

+00

AZx) =D a,(0)(x" = x")expli(x + x 1) Z].

n=1

(A5)

Now the inverse Z transform can be applied to the sequences
{a,} and {a_,}. The sum of these two inverse transforms
is

+00

a(2) + a_(Z) = 2 a,(0)1,,
n=1

where the complex integral /, is given by
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dx
= (" = xMexpli(x + x 1 Z]—.
2 ) gy X
By switching to polar coordinates and by using the
integral representation of the Bessel function [33], we
obtain

1 d.
—&  xexplir+x 2] = i,(22).
X

21ri [x|=1

Thus

PHYSICAL REVIEW E 73, 036616 (2006)

I,=i72")_,,(27) - i*"J,,(22Z)
=i 1)*"1,,(22) - i*"1,,(22)
=0.
As a result, a,(Z2)+a_,(Z)=0.

Given that i%+a1+a_1=0, then a direct integration of
this relation along with the fact that a,(Z) +a_;(Z)=0, leads
us to the conclusion ay(Z)=0 for every Z.
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